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LJsing the fundamental relations of Kalman’s approach to optimal filtering, a digital 
computer simulation of the Kalman tiltering process is developed. The simulation 
COnSiStS of nUmeriCa inlegation Of the sOhttiOn Of the m&tiX dihkrentia! eqL!dtbns 

describing the linear system random process model and the optimum filter. As a prelude 
to this, a brief presentation of the fundamental concepts underlying the derivation of 
K&man filtering theory is given. An assumption basic to this approach is that a suEi- 
ciently accurate model of the random process can be given by a linear, possibly time- 
varying, dynamic system excited by white Gaussian noise. The generation, by digital 
techniques, of the white Gaussian noise used in the simulation, is based upon a one- 
dimensional variable transformation and the assumption that a uniformly distributed 
uncorrelated random sequence of numbers from the interval [O, 1) is available. Tests 
are conducted to determine the validity of this technique which is used to convert the 
uniformly distributed random sequence to a Gaussianly distributed random sequence 
and to determine the validity of the assumption that the given sequence is actually 
uniformiy distributed and uncorrelated. 

Recently, in the field of communication theory, there has been a considerable 
amount of interest in estimation techniques based on the state-variable approach 
to representing dynamic systems. Notably among these has been the one formulated 
by Kalman [l-3], which involves the theory of orthogonal projection in Hilbert 
space. Even though this technique does not allow one to formulate problems 
which could not be formulated before by other well-known techniques, e.g., 
Wiener’s theory of filtering and prediction, it does make it possible to obtain a 
complete solution to these problems which consists of the specification, ancb 
description of implementation, of the differential equations of the optimal Hter. 

In the case of conventional approaches to estimation, even when analytical 
results can be obtained, which is usually only for a few trivial academic examples, 
and certainly not when nonstationarity or time-varying behavior is considered, 
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these approaches terminate with the specification of the transfer function or 
impulse response of the optimal ater, and therefore suffer from one major problem: 
the inability to describe the implementation of the optimal filter. In other words, 
a complete solution to the problem is not obtained since in general there is no 
simple method of synthesizing a filter with a prescribed transfer function or 
impulse response. This is the main shortcoming that Kalman’s technique attempts 
to overcome. 

With these ideas as a background, a study of the derivation of this technique, 
and a simulation on the digital computer of the resulting complete solutions, i.e., the 
filter equations, for several interesting examples were carried out. Also, a brief 
presentation of the fundamental concepts and ideas which were used by Kalman 
in his development, a description of the approach used to simulate the Kalman 
filter, a description of the digital techniques used to generate appropriate random 
noise required for the simulation, and the results obtained, are given, 

DERIVATION OF KALMAN FILTER EQUATIONS 

Simply speaking, the Kalman filter is used to produce an estimate S(t) of the 
values of the state-variables of a linear system which is the model of some random 
process and which is subject to stochastic inputs (Boldface symbols in text are 
equivalent to the same symbols underscored with a circumflex in figures). To do 
this, the Kalman filter uses as its input a signal which is a noisy observation of the 
output of the linear system. Then, by using an appropriate mathematical operation 
on this signal, it creates the desired optimal estimate. This configuration is illustrated 
graphically in block diagram form in Fig. 1. This is not an ordinary, but a matrix 

L--------J 

FIG. 1. Configuration of estimation problem. 

block diagram as revealed by the fat lines indicating signal flow. The stochastic input 
to the system is an additive noise signal and is represented by u(t). The observation, 
y(t), is the sum of the linear system output expression which consists of a set of 
linear combinations of the state-variables of the system, and v(t), which, like u(t), 
is an additive noise signal. We assume both u(t) and v(t) to be stationary, Gaussian 
random processes with zero mean, and that both noise processes are white so 
that their correlation functions may be written as 

WN ur(t + T)> = Q(t) S(T) and E{v(t) v(t + T)} = P(t) 8(T), (1) 
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where 6(r) is the Dirac delta function. Thus, for example, the element of 
the intersection of the ith row and the jth column is equal to the cross-correlation 
function between u;(t) and uj(t), i.e., 

E(Zli(t) Uj(t + T)j = Q;j(f). (2) 

Also, we assume that n(t) and v(t) are independent, thus allowing us 10 write 

E{u(t) V(l + T)) = 0. (5) 

Now that the overall picture has been presented, let us state the problem forma@ 
and mathematically, and then give a brief outline of the approach we will use to 
obtain the form of the Kalman filter. 

First, let us describe what we will call the n7essnge process, as the random 
process x(t) generated by the linear system model 

k(t) = A(t) x(t) + B(t) u(t), (4) 

where x(t) is an n-vector, u(t) is an m-vector (112 < n), and A(t) and B(t) are in 
general time-varying 72 x 71 and R x nz matrices respectively. In other words, 3-e 
characterize the message process in terms of the vector differentia! equations 
describing the linear system which would generate this process if it were excited 
by white noise. The observed signal is 

y(t) = C(f) x(fj -t v(tj, (3 

where y(r) and v(t) are p-vectors (p < 7z), and C(t) is a time-varying p x n matrix. 
The matrix product C(r) x(t) is the linear system output expression. The functions 
u(t) and v(f) have the properties described above. 

Thus, the optimal estimation problem may be stated as follows: Given observed 
values of Y(T) in the time interval f, < T < f, find the minimum-variance unbiased 
estimate it(tI 1 t) of x(t3. The notation ;i(t, 1 t) represents the optimal estimate of 
x(t) at time t, based on all the previous observed values of y(T). Using this approach, 
we can consider estimation based on past data lying in either the finite or ikink 
time interval. Fig. 2 shows graphically the configuration of the estimation problem 
including the continuous-time domain form of the linear system. 

Depending on whether t, is less than, equal to, or greater than z, the problem 
includes the smoothing, filtering, and prediction problems, respectively. Also, 
very importantly, it includes the problem of reconstructing all of the state- 
variables of a linear system from noisy observations of linear combinations of 
only su??le of the system’s state-variables. 

Even though we have so far postulated our problem in the continuous-time 
domain, and will eventually wind LIP with our solution postulated in the continuous- 
time domain, the derivation that we will present, because of inherent simplifica- 



178 CAMP 

LINEAR SYSTEM 
RANDOMPROCESSMODEL 

FIG. 2. Configuration of estimation problem including continuous-time domain form of 
linear system. 

tions, will be given within the framework of the discrete-time domain. Once we 
obtain a solution, it is a simple straightforward manipulation to return to the 
continuous-time analog. In addition, we will consider only the case of discrete- 
time prediction at time (t + I), i.e., we will seek the optimal estimate G(t + 1 1 t) 
of x(t + 1) given all observations on y(t) up to time t. It is not difficult to extend 
these results to the cases of prediction at time (t $ n), n = 1,2, 3,..., and to 
filtering, i.e., to estimation at time t. These results may also be extended to smooth- 
ing although the derivation here is much more diificult. Since our treatment will 
be general enough to cover these three cases, we will refer to them collectively as 
estimation. 

Hence, to consider our problem in the discrete-time domain, the statement of 
the problem will have to be modified slightly. The random process that we had 
before will now be represented by the discrete-time expression 

x(t + 1) = 4(t + 1; 0 x(t) + W, u(t), (6> 

where $(t + 1; r) is the M x rz state-transition matrix of the system, u(t) is a 
white noise random sequence m-vector which is constant during each sampling 
period, and D(t) is a n x m time-varying matrix. The relationship between 
+(t + 1; t) and A(t), and between D(t) and B(t) will be seen later. Thus, given the 
observed values of y(t,,),..., y(t), we want to find the minimum-variance unbiased 
estimate ri(f, j t) of x(tJ. Since we are only going to consider prediction at time 
t + 1, we replace tl by t + 1. The rest of the problem statement is essentially the 
same as the continuous-time case. 

Before we begin our derivation, let us present a few preliminary ideas that we 
will need. We define the linear manifold (linear vector space) Y(r) generated by 
y(t,,),..., y(t) to be the set of all linear combinations 
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of all m coordinates of each of the observed random vectors y(t,J,..., y(t). %‘e 
regard, abstractly, any expression of the form (7) as a ‘Lpoint” or “vector” in Y(r). 

Given any two vectors a and b in Y(t), we say that a and are orthogonal if 
Ejab} = 0. Now, if we have any vector-valued random variable x [not necessarily 
in Y(r)], it can be uniquely decomposed into two parts: a part Z in Y(tj and a 
part ii orthogonal to Y(t), i.e., orthogonal to very vector in Y(f). We call Z he 
orthogonal projection of x on Y(t) and define it as E(x(t + I) \ Y(f)>, i.e.: 

qt + 1 j t) = SZ(t + 1 ( t) g E{x(t f 1) j Y(E))* 

Also we give the following definition: 

(8) 

%(t + 1 / r) A x(t + 1) - Et(t + 1 j r). pj 

Thus, the optimal estimate, %(t + 1 j t), of x(t + 1) given y(t,),..., y(t), is nothing 
more than the orthogonal projection of x(t + 1) on Y(r). Therefore, what we 
have stated is that the optimal estimate is a linear combination of ail previous 
observations. Jn other words, the optimal estimate can be regarded as the outs& 
of a linear filter, with the input being the actually occurring values of the observable 
random variables. Hence, if we can obtain an expression for %(t + 1 ( I) we will 
have the form of our filter. 

Some further results which we state without proof, from Projection Theory in 
Hilbert Space, and which are basic to our treatment, are the following: 

(1) If an orthogonal sequence z1 ,..., z, generates a linear manifold, M, 5 
then: 

(b) if x # I\K,~ , the best (minimum-variance unbiased) estimate of x is 
x = 7 E(X‘Q) E{zizp zi = E(x j M,). 

(2) If z,,+1 is orthogonal to n/r,, , then 

E(x / &&, , z,+~) = E(x j fWn) + E{x j z.&. 

(Notice that Ejx j M, , z,+~} is equivalent to Ejx ] A&,,>.) 
Let us begin our derivation by assuming that y(t&..., y(t - 1) have been 

observed, i.e., that Y(t - 1) is known. Next, at time t, the random variable y(f) 
is observed. Let P(t / t - 1) be the component of y(t) orthogonal to Y(t -- 1). 
If f(t / t - 1) = 0, which means that the values of all components of this random 
vector are zero for almost every possible event, then Y(t) is obviously the same as 
Y(t - 1) and therefore the observation of y(t) does not convey any additional 
information. This is not likely to happen in a physically meaningful situation. In 
any case, v(f ! t - 1) generates a linear manifold (possibly zero) which we will 
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denote by Z(t). By definition then, Y(t - 1) and Z(t) taken together are the same 
manifold as Y(t), and every vector in Z(t) is orthogonal to every vector in Y(t - 1). 

We shall compute %(t + 1 1 t) by induction, assuming that x(t ) t - 1) is known. 
By (2) from our Projection Theory results, the conditional expectation of x(f + 1) 
can be decomposed into two parts: 

(i) the conditional expectation of x(t + 1) given Y(t - l), and 
(ii) the conditional expectation of x(t + 1) given Z(r). 

Here we recall that Y(t - 1) is the linear manifold generated by the observations 
Y(h),..., y(t - l), and Z(t) is orthogonal to Y(t - 1) and is the linear manifold 
generated by y(t ] t - 1). Thus, 

jqt 1 t - 1) = y(t) - y(t 1 t - 1) = y(t) - E{y(t) 1 r(t - lj} 

= y(t) - C(t) qt 1 t - 1). (10) 

In the last equation $(t) represents the new information added by making an 
observation of y(t) at time t. It is the difference between the actual observation 
of y(t) at time t, and the expected value of y(t) at time t based upon information 
available at time t - 1. 

Thus we may write the following: 

ji(t + 1 / t) = E{x(t + 1) 1 Y(t - l)} + E(x(t + 1) j Z(t)}. 

Since 

we have 

x(t + 1) = +(t + 1; t) x(t) + D(t) u(t), 

E(x(t + 1) I Y(t - l)} = E([$(t + 1; t) x(t) + D(t) u(t)1 I Zt - I>> 

(11) 

= +(t + 1; t) EM) I Y(t - 1)) + D(t) EW) I W - 111 

= q5(t + 1; t) Si(t 1 t - 1) + D(t) E@(t) 1 Y(t - l)}. (12) 

Since, by assumption, u(t) is an independent Gaussian m-vector random process 
with zero mean, it follows that u(t) is orthogonal to Y(t - l), and therefore 

E{u(t) [ Y(t - 1)) = 0. (13) 

Now for the second term of (1 l), let us use (l)-(b) of our results from Projection 
Theory to state that 

E{xO + 1) I at>> 
= E{x(t + 1) yT(t 1 t - I)} E{y(t j t - 1) yT(t I t. - l)}-l y(t 1 t - l), (14) 
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where the summation sign does not now appear since Z(t) is the linear manifold 
generated by only y(t j t - 1). 

Next, let us see how to compute 

EM + 1) BT(t I t - 01 

From (Sj and the fact that 

and E(y(t 1 t - 1) jqt j t - l)y, 

X(t) = Si(t 1 t - 1) + i;(t j t - lj, 
we have that 

W(f + lj YT(f I t - 1)) 
= W#(t + 1; 0 x(t) + D(t) u(Ol[l=(t I t - Ol> 
=E{[r$(t+l;t)qtIt-l)f4(t+l;t)f(t(t-1) 

01 WlW”(t I t - IN 
= E{+(t + 1; t) ii(t 1 t - 1) yyt I t - 1)) 

+ E(+(t + 1; t) 2(t 1 t - 1) yr(t / t - 1)) -!- E{D(t) u(t) Y=:T(t I t - 1); 
=t$(t+I;t)E{~(tjt-l)~=(t[t-l)) 

+ N f 1; t) Ejii(t 1 t - 1) y=(s I t - 1)) + D(t) E{u(t) y(t I 1 - 1)). ( 

As before, because u(t) is an independent Gaussian nz-vector random process 
with zero mean, it is orthogonal to Z(t) and therefore to every vector in Z(t), and 
in particular to g(t 1 t - 1). Hence, 

E{u(t) p-(t 1 t - I)> = 0. (17) 
Also, 

E{il(t [ t - 1) yyt j f - 1)) = 0 (IS) 

because %(t I t - 1) is a vector in Y(t - lj and y(t j t - 1) is a vector in Z(f) 
the linear manifold which is orthogonal to Y(t - lj. Thus, 

E(x(t -l- 1) jfT(t j t - 1)) = $(t + 1; t) E{[ii(t I t - lj][C(tj z(t j t - 1) $ v(t)]” 

= +(t + 1; t) E{%(t j t - I> S(t \ t - I)) C=(t) 

+ c#qt + 1; t) E{%(t ! t - 1) vT(tj) 
= #(t --- 1; t) E(ji(t j t - I) S(t ] t - I)) C=(tj: (19) 

since %(t j t - 1) and v(t) are orthogonal. If we deI?ne 

then 
Z(t 1 t - 1) = E(%(t [ t - lj zET(t / t - lj], 

Ejx(t + 1) y=rT(t I t - l)} = cj(t + 1; t) qt 1 t - 1) CT(t). (20) 



182 CAMP 

Since 

jqt 1 t - 1) = y(t) - gt 1 t - 1) = y(t) - c(t) qt [ t - 1) 

= C(t) x(t) + v(t) - C(t) jz(t 1 t - 1) = C(t) qt I t - 1) + v(t), (21) 

we may write 

E$(t 1 t - 1) jqt / t - l)} 

= E{[C(t) %(t 1 t - 1) + www 20 I t - 1) + v(tFI 
= c(t) Ejf(t 1 t - 1) qt j t - l)} CT(t) + C(t) E{%(t I t - 1) v’(t)} 

+ E{v(t) F(t 1 t - l)> P(t) + E{v(t) v’(t)}. (221 

Again, 
E{f(t / t - 1) VT(t)} = 0, (23) 

and 
E@(t) iiT(t ( t - 1)) = 0 (24) 

because v(t) and iz(t 1 t - 1) are orthogonal. Thus, 

E{y(t 1 t - 1) $yt I t - I)} = C(t) C(t ) t - 1) CT(I) + P(t). (25) 

Hence, combining equations (ll), (12), (14), (20), and (29, we obtain the equa- 
tion for the optimal filter: 

ji(t+lIt)=+(t+l;t)f(tIt-1) 

+ [9(t + 1; 1) w I t - 1) ww(o C(t I t - 1) CT(t) + P(W 
x [y(t) - C(t) i;(t I t - 01. (26) 

Let 

K(t) = [(b(t + 1; t) C(t I t - 1) CT(t)][C(t) qt I t - 1) CT(t) + P(t)]-1; (27) 

then 

Si(t + 1 I t) = #(t + 1; t) i2(f [ t - 1) + K(t)[y(t) - C(t) %(t I t - l)]. (28) 

Of course, the initial state %(& I to - 1) = %(to) must be specified also. This is 
taken to be zero since initially there are no observations and the mean of x(t,,) 
is assumed to be zero. Thus, 

wo I to - 1) = %(to) = E{x(t,)} = 0. (291 
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We complete the soWion of the filtering problem by deriving a recursion relatioil 
for what we will define as the covariance matrix for the error between what the 
state-variables, x(t), actually are, and what we estimate the-m to be, %(f)~ WC 
designate this covariance matrix as E(t / t - 1) and it is the only remaining 
unknown in (26). We will go about this in the same way that we did in deriving 
the recursive relation for ii(t ! t - l)., i.e., by computing C(t + I / t> by induction 
assuming that Z(t j t - 1) is known. Using the definition of LZ(t i I I 1) gives by 

C(t + 1 \ t> = E{ii(t + 1 / t) iiT(t + 1 i t)j-, (XQ 

and parts (l)-(b) and (2) of our results from Projection Theory, we have the 
following: 

E(f + 1 i tj = E([x(t + 1) - ?(t + 1 j t)][X(t + 1) - t(t -+ 1 ; t)]‘> 

= E([x(~ + 1) - %;(t + 1 1 f - 1) - E{x(t + a> j z(t)>] 

x [x(t + 1) - 2(t + 1 j t - 1) -- E(x(E + 1) I Z’(t~~~]T~ 

= E{[ii(t + 1 1 t - 1) - E(x(t + 1) j 2(t)>] 

X [ji(t + 1 j t - 1) - EiX(t + 1) j .Z(t>j]T]. (31) 

where 

ir(t + I j t) = E{x(t + 1) 1 Y(t)> = E{x(t + lj j Y(t -- I)i + E{x(t f 1; / Z(r>) 

= %(t + 1 j t - 1) + E(x(t + 1) j z(t)). (32) 

NQW 

E(x(t t 1) / Z(t)) 

= E(x(t + 1) yT(t 1 t - l>> E($Y(t 1 t - 1) yT(t i t - I))-1 $(I 1 ; - 1). (33) 

Thus, 

C(t + 1 / t) = E{[ii(t + 1 1 t - 1) - E(x(r + 1) y=(t / t - 1)) 

x E@(t 1 t - 1) yT(t / t - l)}-1 F(I j t - I)j[Z(t + 1 1 f - 1) 
- E{x(t $ 1) YT(t 1 t -- I)) qyjt j t - 1) YT(t ! t - I))-1 jqt j t - I)]‘) 

= E-(it(t + 1 1 t - 1) tF(t + 1 1 t - 1)) - E(x(t + !.j yT(t / t - ij; 

x E{y(t 1 t - 1) y=(t / t - l))-1 E($Y(t / t -- i) iiT(t $- 1 ! i - r>;. 
- E(f(t + 1 j t - 1) y=rT(t / t - 1)) E($qt ! t - n> YT(t ! t - 1>)-“5 
x E(x(t + 1) y=(t 1 t - l)}T + E(x(t + 1) yT(t / t - I)} 
x E{v(t I t - 1) y=(t 1 t - l)}-1 E{y(t / t - 1) F’(t j t - 1); 
x E(y(t 1 t - 1) y=(t / t - l)}-l’E(x(t + 1j g=(t 1 t - l)jT~ (34> 



184 CAMP 

Notice that 

E{x(t + 1) YT(t 1 t - 1)) = E{[si(t + 1 I t - 1) + qt + 1 I t - l)][Y’(t 1 t - I)]] 

= E{f(t + 1 J t - 1) gyt J t - 1)) (35) 

since ?(t + 1 1 t - 1) and y(t ( t - 1) are orthogonal. Thus simplifying (34) gives 

qt + 1 I t) = E(f(t + 1 ( t - 1) jZT(t + 1 1 t - 1)) - E{x(t + 1) jqt 1 t - l)} 

x E{f(t ( t - 1) fqt [ t - l))-1 E(x(t + 1) jqt [ t - I)}=. (36) 

Now using the relation 

iz(t + 1 ] t - 1) = x(t + 1) - qt + 1 ] t - 1) 

=r$(t+l;t)x(t)+D(t)u(t)-+(t+l;t)2(tjt-1) 

= qb(t + 1; t) %(t / t - 1) + D(t) u(t), (37) 

we get 

:qt + 1 I t - 1) jiT(t + 1 I t - l)} 

= E{[+(t + 1; t) S(t I t - 1) + D(t) u(t)l[qb(t + 1; t) %;(t I t - 1) + D(t) a(t) 
=E{Cj(t+1;t)ii(t~t-l)iTT(t~t-1)(p=(t+1;t)) 

+ E{qb(t + 1; t) ji(t 1 t - 1) u=(t) Dr(t)} 

+ E{D(t) u(t) %=(t I t - 1) 9Yt + 1; t)> + E(W) u(t) UT(t) D’(t))) 
= qb(t+ l;t)E{f(tI t- l)F(t( t- 1)}9F(t+ l;t) 

+ +(t + 1; t) E(%(t j t - 1) G(t)} W(t) + D(t) E@(t) ST(t I t - l)} 

x qS=(t -+ 1; t) + D(t) E{u(t) u=(t)] D’(t), (38) 

or 

E{ii(t + 1 j t - 1) %=(t + 1 / t - l)] 
= +(t + 1; t) z(t 1 t - 1) +=(t + 1; t) + D(t)Q(t)D’(t). (39 

Substituting equations (20), (25) and (39) into (36) we get 

z(t+1jt)==#(t+1;t)~(tlt--)~=(t+1;t)+D(t)Q(t)D=(t) 
- [(b(t + 1; t) qt I t - 1) t7(t)][C(t) qt I t - 1) C=(t) + P(W 
x [qqt + 1; t) C(f ( t - 1) C=(t)]=. (40) 

We shah call equation (40) the Variance Equation. Two features of this equation 
are noteworthy. First, the equation does not involve the observations y(t). Since 
the gains of the optimal filter are governed by the variance equation, this means 
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that the structure of the optimal filter (i.e., the element vaiuesj can be determined 
independently of the random data y(t). 

Second, equations (26) and (40) together completeiy determine the conditional 
distribution of the random sequence for t, = t + 1, given y(t,),..., y(f). Iin other 
words, the quantities f(t 1 t - 1) and C(t j i - 1) may be regarded as the state 
of the titering problem. 

The solution of the variance equation is not determined until the initial state 
~(t, / T,, -- I) is given, This is regarded as part of the probiem statement and is 
defined as follows: 

qr, 1 t, - 1) = c&J = cov[x(ta)] = E([x(t,) - E{x(t*j)][x(tJ - E{x(toj)]“>~ (41) 

This definition is a result of having selected the initial state of the estimate of the 
state-variables as 

ji(t, j t, - 1) = ii(&)) = E(rr(f&~ f&31 \ “.T 

At this point we have completely defined the problem. Let us therefore review 
for a moment and rewrite the important relationships. 

(a) The linear system random sequence model which generates our message 
process x(t) is completely characterized by the equations 

x(t + 1) = +(t + 1; t) x(t) $ D(fj u(l), t43i 
y(t) = C(t) x(t) + v(t), 

1.4 / 

(b) The characteristics of the noise are described by the equations 

EW UT0 + 4) = Q(t) S(T)> E(u(tj> = 0, 
E{v(t) vyt + T)> = P(t) S(T), E(v(t)j- = 0, (44) 

l?{U(t) VT(f + T)] = 0, 

where S is the Dirac delta function, and Q(t) and P(t) are symmetric matrices. 

(cj The initial conditions are given by 

ii@, / to - 1) = i2(r,) = E{x(t,)) = 0, 

C(to j t, - 1) = Z(t,j = cov[x(t,,)] = E{[x(t,) - E(x(tO)>][x(rO) - E{x(t&J?. 

(d) The optimal filter is completely characterized by the following three 
equations: 

(i) ji(t + 1 ( t) = (p(r + 1; t) %(t / t - 1) f K(t)Ey(tj - C(t) %(t / t - I)]; 

(ii> K(t) = [+(t + 1; t) Z(t i t - 1) C’(t)][C(t) ZZ(t j t - 1) CT(t) f P(t)]-I: 
where X(t 1 t - 1) = E{f(t 1 t - 1) iiT(t 1 t - 1)); 
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(iii) Z(t + 1 / t) = ~$(t + 1; t) X(t j t - 1) @(t + 1; t) + D(t) Q(t)DT(t) 

- [4(t + 1; t) qt I t - 1) CT(t)l[C(t) qt I t - 1) CT(f) + P(Ol”~~(~ + 1; t> 
x qt ( t - 1) CT(t)]T, 

where the last equation is the Variance Equation. 

Thus, we have developed the recursive relations to iteratively evaluate the 
optimal Kalman filtering process. Equations (26) and (40) describe the structure 
of the filter and the general block diagram is shown in Fig. 3. It is a feedback 
system built around our model of the random sequence described by Eq. (43). 
The error signal q(t 1 t - 1) is fed forward into the model with gain K(t). The gain 
is such that the input to the model is the conditional expectation of x(t + 1) 
given the observed difference y(t) - f(t ] t - l), i.e., the magnitude of K(t) is 
indicative of the amount of information contained in the signal y(t 1 t - 1) about 
the state x(t + 1). 

r---- -- --- --7 ---------- 

i _ $tlt-o 
l---.-----------J 

FIG. 3. Discrete-time domain structure of Kalman filter. 

Now, as was stated earlier, by allowing the sampling period (equal to unity 
so far) to approach zero in the limit, it is possible to obtain expressions describing 
the optimal filtering process in the continuous-time domain. The derivation which 
is used to do this is semirigorous and will be described only briefly. 

Let q be a positive integer and let the time t be discrete so that its successive 
values differ by q-l. Then, assuming that +(t + 1; t) is the transition matrix of 
a continuous-time linear dynamic system, we have 

40 + q-l; t) = I + PA(t) + 0(4-l), 

D(t) = ,:+“-I r$(t + 1; T) B(7) dr = q-lB(t) + 0(4-l), (45) 

where O(q-l) denotes a matrix which is zero in the limit as q--j co. Next, guided 
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by procedures (which we will not go into here) about how to detine Gaussian 
white noise processes as the formal limit of appropriate Gaussian white noise 
sequences [3], the covariance matrices P(t) and Q(t) are replaced by qP(t> and 
qQ(t), respectively. 

Substituting these expressions into Eq. (6) we obtain 

x(t + q-1) - x(t) 
q-’ 

= ${[I + q-IA(t) + O(q-I)] x(r) f [q-‘B(t) + O(q-I)] u(t) - x(f)) 

= A(t) x(0 + B(r) u(f) + O(P). 

Thus, in the limit we have 

r;(t) = A(t) x(r) + B(t) u(t) 

From Eq. (40) we see that 

z(t t q-l j t) - Z(t / t - q-l) 
4-l 

= -$ UI + q-W) + W1)l z(t I f - q-l)11 + q-lA(t) + O(q-l>lT 

+ q-lB(t) qQ(t) q-lBT(t) - ([I + q-IA(t) + O(q-‘)] B(t i f - q-l) CT(f)] 
x (C(r) X(t / t - q-l) CT(f) + qP(t):-l([I + q-rA(t) + @(q-l)] 
x qt 1 t - q-l) c=(t)>T - rz(t 1 t - q-l)] 

= --$ (q-YA(t) z(t / t - q-l) + E(t / t - q-l) AT(r)] + q-%(t) Q(t) W(t) 

- q: I i - q-l) C’(t)[q-‘C(t) z(t j t - q-l) c?(t) + P(t)]-’ q-W(t) 
x z(t I t - q-l) - q-lA(t) E(t ( t - q-l) CT(t)&T(t) z(t 1 t - q-l) CT(t) 

+ P(t)]-1 q-T(t) S(t / t - q-1) - C(t / f - q-1) C=(t)[q-T(t) 

x Z(t / t - q-l) CT(t) + P(t)]-l q-W(t) CT(t j I - q-3 q-lAT(f) - q-IA(t) 

x qt j t - q-1) CT(t)[q-T(t) z(t I t - q-l) CT(t) +- P(t)]-1 q-T(t) 

:< ZT(f j t - q-l) q-‘AT(t) + O(q-1)). 

In the limit then, the fourth, fifth, and sixth terms in the above equation vanish, 
and 

i(f I f) = A(t) C(t I t) + C(t I t) A’(f) f B(r) Q(t) 

- qt / t) P(t) P-‘(t) C(i) C’(f I r). 

If we let k(t) = E(t 1 t) we obtain 

h(t) = A(t) R(t) + R(f) AT(t) + B(t) Q(t) BT(t) - R(t) C=(t) P-*(t) C(t) RT(t)G (46) 



188 CAMP 

From Eq. (28) we have 

%(t + q-1 1 t) - ji(t 1 t - q-1) 
4-l = + {[I + q-W) + O(q-91 W I t - q-9 

+ K(t)[y(t) - C(t)%(t I t - q-l)] - x(t j t - q-l)) 

= A(t) 20 I t - q-l) + qW)[y(t) 
- c(t) I;(t ) t - q-l)] + O(q-1). (47) 

Now let us stop for a moment and consider the expression for qK(t). From Eq. (27) 

qK(t) = q(D + q-W) + O(q-31 C(t I t - q-9 CT(t)} 
x {C(t) w I t - q-l) CT(t) + qPttY 

= rz(t 1 t - q-1) C(t)[q-T(t) C(t 1 t - q-1) C=(t) + P(f)]-’ 

+ A(t) C(t 1 t - q-l) CT(t) 
x [q-T(t) C(t 1 t - q-1) CT(t) + P(t)]-lq-1. 

Passing to the limit then, qK(t) becomes E(t), where 

i?(t) = C(t j t) CT(t) P-‘(t) = R(t) CT(t) P-‘(t). 

Hence, Eq. (47) becomes 

ii(t) = A(t) S(t) + E(t)[y(t) - C(t) 2(t)]. (48) 

Thus we may replace the equations for our discrete-time problem by the 
following equations for the continuous-time case. 

(a) The linear system random process model is now completely characterized 
by the equations 

g(t) = A(t) x(t) + B(t) u(t) 

y(t) = C(t) x(t) + v(t). 
(49) 

(b) The optimal titer is now characterized by the equations 

i(t) = A(t) 52(t) + K(t)[y(t) - C(t) S(t)] 
E(t) = R(t) CT(t) P-‘(t) 
J%(t) = A(t) R(t) + R(t) AT(t) + B(t) Q(t) BT(t) - R(t) CT(t) P-“(t) C(t) RT(t). 

(50) 

The descriptions of the noise and initial conditions are essentially the same as 
before. 
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Equations (49) and (50) represent the Kalman filtering problem in the continuous- 
time domain and are the equations used for the digital-computer simulation, In 
this simulation, the initial condition for the estimate of the system state-variables 
was always selected to be zero. The noise was generated digitally and was assumed 
to have the appropriate characteristics. More is said about this noise generation 
problem in a later section. 

One interesting variation on the basic Kalman titering problem which was 
tried without rigorous derivation, but with interesting results, was the following: 

6) ki(fj = A(t) x(t) + B(f)k(f) -t u(f)], 
Y(f) = w> x(t) + VW? $1) 

(b) $0 = A(t) Z.(t) f B(t) g(t) + ~(t>[y(t> - C(t) x(t)1 
z(t) = R(t) CT(t) P-‘(t) 

l%(t) = A(t) R(r) t R(t) AT(t) + B(t) Q(t) BT(t) 

- R(r) CT(t) P-‘(t) C(t) RT(t), (52) 

where g(t) represents some desired input to the system, such as an optimal control 
vector. 

DIGITAL COMPUTER SIMULATION OF KALMAN FILTER 

The first configuration which was digitally simulated was that described by 
Eqs. (49) and (50). The second configuration which was simulated is described 
by Eqs. (51) and (52). Figures 4 through 9 show the simulation results for the two 
different systems. The describing matrices and noise properties are shown for 
each system. 

-. iii 
.4 .6 .8 1.0 I.? 1.3 1.6 1.5 i.ii 
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FIG. 4. State variable X,(t) of linear system random process model (---)> and its 
Kalman filter estimate (----). 
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FIG. 5. State variable X%(t) of linear system random process model (---), and its 
Kalman filter estimate (- - - -). 
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FIG. 6. State variable XI(t) of linear system random process model (-), and its 
Kalman filter estimate (- - - -). 
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FIG. 7. State variable X2(t) of linear system random process model (--), and its 
Kalman filter estimate (- - -). 
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Ek. 8. State variable X1(t) of linear system random process model (-), an.d its 
Kalman titer estimate (- - - -). 
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FIG. 9. State variable X*(,(t) of linear system random process model (-), and-its optimal 
Kalman titer estimate (----). 
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METHOD OF NOISE GENERATION AND TESTS FOR RANDOMNESS 

The method of generating random noise was based on the idea that given a 
random sequence of numbers which appear to be drawn from a uniform distribu- 
tion, an appropriate one-dimensional variable transformation may be made to 
produce a subsequent random sequence of numbers which appear to be drawn 
from a normal, or Gaussian, distribution. A congruential method of generating 
random numbers was used to obtain a uniformly distributed random sequence. 
This method will not be described here since it is well known and is described 
fully in the literature. However, tests for how closely the random sequences 
approached uniformity were carried out, and will be described subsequently. 

SAMPLEMEAN -0.494 
SAMPLE VARIANCE = 0.082 
POPULATIONMEAN =0.500 
POPULATION VARIANCE-O.083 

FIG. 10. Distribution of approximately uniformly distributed random sequence (a), and true 
uniform distribution (- - - -). 
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SAMPLEMEAN -11.960 
SAMPLEVARIANCE = 3.916 
POPULATIONMEAN =12.000 
POPULATION VARIANCE= 4.000 
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FIG. 11. Distribution of approximately Gaussianly distributed random sequence (a), and 
true Gaussian distribution (- - - -). 
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Figure 10 shows the distribution of a random sequence of 1000 numbers 
generated by a congruential method which was designed to produce approximately 
uniformly distributed random numbers in the interval [O, 1) This distribution 
was obtained by dividing [0, 1) into equal subintervals and counting the numbers 
that fell into each subinterval. Also plotted in the same figure is the true uniform 
distribution. Figure 11 is a similar plot for a sequence of 1000 random numbers 
generated by transforming by standard means a uniformly distributed random 
sequence of numbers. Also plotted in the same figure is -the true Gaussian distri- 
bution. 

Thus we see that if we have a uniformly distributed random sequence, it can be 
transformed into a Gaussianly distributed random sequence. The question that 
remains, however, is whether or not the given random sequence is acceptably 
uniformly distributed. 

To test the sequence of random numbers for this property, the interval over 
which these numbers are distributed, [O, 1), can be divided into k equal subinter- 
vals. Then the frequency fi can be determined for a sequence of n numbers, where 
jYi is the number of the numbers in the i-th interval, and the statistic 

can be computed. It is well known [4] that this statistic has a chi-squared distri- 
bution with k - 1 degrees of freedom provided that n is large and the sequence 
is actually drawn at random from the uniform distribution. Thus, for exam.ple? 
if k = 10, this statistic should not exceed 16.9 more than 5 y0 of the time. 

This x,2 statistic was calculated for a block of 1000 numbers in a sequence, 
repeated with a second block, and so on, for 100 blocks. The 100 values of x,2 wh&h 
were obtained in this way, and 100 corresponding values from a true chi-square 
probability density function, were plotted to see how closely the two matched. In 
addition, the first sample moment about zero, nz,‘, and the second sample moment, 
m, ) about the expected value of the first sample moment, were calculated to 
compare with the mean and variance of a true &i-square distribution with ic - 1 
degrees of freedom. We may express these sample moments as 

ml = - i, e x:i, 
z=l 

and 
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Since the expected value of the r-th sample moment about zero is equal to the r-th 
population moment about zero, i.e., E[m,‘] = pi, we have 

and 

For the chi-square distribution with r degrees of freedom, 

pLL; = Y and per = r(r + 2). 

Therefore, 

E[&‘] = r and E[m,] = 2r. 

h’12- (56) 

(57) 

cm 

For the case considered here, the interval [0, 1) was divided into k = 10 sub- 
intervals. Thus the number of degrees of freedom was equal to 9, and therefore, 

E[m,‘] = 9, and E[m,] = 18. (59) 

Figure 12 shows a sample distribution obtained as just described, and also a 
plot of a true chi-square distribution with the same number, i.e., 9, degrees of 
freedom. The sample moments and corresponding population moments are also 
shown. 

SAMPLEMEAN = 8.208 
SAMPLE VARIANCE ;18.707 
POPULATIONMEAN = 9.000 

.I5 
POPULATION VARIANCE ;18.000 

.06 

0 
0 9.0 18.0 27.0 36.0 45.0 

FIG. 12. Distribution of x1” statistic and true chi-square distribution with 9 degrees of freedom. 
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In addition to being uniformly distributed, another requirement of a random 
sequence that was of interest here was that there be no correlation between each 
number and the one immediately following it in the sequence. One way to test 
for this property is to determine the frequency .fij for the sequence, where Jfij is 
the number of numbers in the i-th interval which are followed by a number in the 
j-th interval. Then the statistic 

can be computed, where k is again the number of subintervals into which the 
interval [0, 1) is divided. It was shown by Good [5] that x,2 - x,2 has an asy-mp- 
totically chi-squared distribution with k’ - k degrees of freedom. This statistic 
was calculated for 100 blocks of 1000-number sequences just as in the previous 
test. The rest of the test was carried out just as before: but here the number of 
degrees of freedom was 90, with the result that 

E[m,‘] = 90 and 

Figure 13 shows a sample distribution and a plot of a true chi-square distribution 
with 90 degrees of freedom. The sample moments and the corresponding popula- 
tion moments are also shown. 

SAMPLEMEAN = 88.2fJo 
SAMPLEVARIANCE = 182.250 
POPULATIONMEAN = 90.000 
POPULATION VARIANCE -180.1X10 

Fw. 13. Distribution of xpz - xl2 statistic and true hi-square distribution with 90 degees 
of freedom. 
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SUMMARY AND CONCLUSIONS 

A brief presentation of the fundamental concepts underlying the derivation of 
Kalman filtering theory has been given. This problem may be described most 
concisely as follows: Given noisy observations of past data lying in the finite or 
inmrite time-interval on the output of a linear system which is the model of some 
random process, and which is excited by white Gaussian noise, we seek the best 
linear estimate of the state of this linear system. An assumption basic to this 
approach is that a sufficiently accurate model of the random process can be given 
by a linear, possibly time-varying, dynamic system excited by white Gaussian 
noise. 

The fundamental relations of Kalman’s approach as considered here consist 
of four equations: 

(i) The differential equations governing the optimal filter which is excited 
by the observed signals and generates the best linear estimate of the state of the 
model of the random process. 

(ii) The differential equations governing the error of the best linear estimate. 
(iii) The time-varying gains of the optimal filter expressed in terms of the 

error variances. 
(iv) The nonlinear differential equation governing the covariance matrix of 

the errors of the best linear estimate, called the Variarzce Equation. 
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